Search results for "Chiral Lagrangians"

showing 10 items of 31 documents

tau -> pi pi pi nu(tau) decays and the a(1)(1260) off-shell width revisited

2009

The tau -> pi pi pi nu(tau) decay is driven by the hadronization of the axial-vector current. Within the resonance chiral theory, and considering the large-N-C expansion, this process has been studied in Ref. [1] (D. Gomez Dumm, A. Pich, J. Portoles, 2004). In the light of later developments we revise here this previous work by including a new off-shell width for the lightest a(1) resonance that provides a good description of the tau -> pi pi pi nu(tau) spectrum and branching ratio. We also consider the role of the rho(1450) resonance in these observables. Thus we bring in an overall description of the tau -> pi pi pi nu(tau) process in excellent agreement with our present experimental know…

High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Hadron tau decays[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Física1/N ExpansionHigh Energy Physics::ExperimentChiral lagrangiansQCDHigh Energy Physics - Experiment
researchProduct

Light flavor and heavy quark spin symmetry in heavy meson molecules

2012

We propose an effective field theory incorporating light SU(3)-flavor and heavy quark spin symmetry to describe charmed meson-antimeson bound states. At lowest order the effective field theory entails a remarkable simplification: it only involves contact range interactions among the heavy meson and antimeson fields. We show that the isospin violating decays of the X(3872) can be used to constrain the interaction between the D and a (D) over bar* mesons in the isovector channel. As a consequence, we can rule out the existence of an isovector partner of the X(3872). If we additionally assume that the X(3915) and Y(4140) are D*(D) over bar* and D*(s)(D) over bar*(s) molecular states, we can de…

QuarkNuclear and High Energy PhysicsParticle physicsMesonNuclear TheoryHigh Energy Physics::LatticeBound statesNuclear TheoryFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesScatteringNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesBound stateEffective field theoryNuclear force010306 general physicsNuclear ExperimentPhysicsIsovectorNuclear-forces010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyOrder (ring theory)FísicaHigh Energy Physics - PhenomenologyIsospinEffective-field theoryHigh Energy Physics::ExperimentChiral lagrangianshadronic molecules
researchProduct

Low-energy couplings of QCD from current correlators near the chiral limit

2004

We investigate a new numerical procedure to compute fermionic correlation functions at very small quark masses. Large statistical fluctuations, due to the presence of local ``bumps'' in the wave functions associated with the low-lying eigenmodes of the Dirac operator, are reduced by an exact low-mode averaging. To demonstrate the feasibility of the technique, we compute the two-point correlator of the left-handed vector current with Neuberger fermions in the quenched approximation, for lattices with a linear extent of L~1.5 fm, a lattice spacing a~0.09 fm, and quark masses down to the epsilon-regime. By matching the results with the corresponding (quenched) chiral perturbation theory expres…

QuarkNuclear and High Energy PhysicsChiral perturbation theoryCurrent (mathematics)High Energy Physics::LatticeFOS: Physical sciencesQuenched approximationStatistical fluctuationsDirac operatorsymbols.namesakechiral Lagrangianslattice QCDHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Latticelattice gauge field theoriesPhysicsQuantum chromodynamicsHigh Energy Physics - Lattice (hep-lat)FísicaFermionQCDFIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIHigh Energy Physics - PhenomenologyLattice gauge theoryQuantum electrodynamicssymbols
researchProduct

Probing the chiral weak Hamiltonian at finite volumes

2006

Non-leptonic kaon decays are often described through an effective chiral weak Hamiltonian, whose couplings ("low-energy constants") encode all non-perturbative QCD physics. It has recently been suggested that these low-energy constants could be determined at finite volumes by matching the non-perturbatively measured three-point correlation functions between the weak Hamiltonian and two left-handed flavour currents, to analytic predictions following from chiral perturbation theory. Here we complete the analytic side in two respects: by inspecting how small ("epsilon-regime") and intermediate or large ("p-regime") quark masses connect to each other, and by including in the discussion the two …

QuarkPhysicsQuantum chromodynamicsNuclear and High Energy PhysicsChiral perturbation theoryHigh Energy Physics - Lattice (hep-lat)FlavourHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaObservableweak decaysPseudoscalarsymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Latticelattice QCDkaon physicssymbolschiral lagrangiansHamiltonian (quantum mechanics)Mathematical physics
researchProduct

Towards a consistent estimate of the chiral low-energy constants

2006

Guided by the large-N_C limit of QCD, we construct the most general chiral resonance Lagrangian that can generate chiral low-energy constants up to O(p^6). By integrating out the resonance fields, the low-energy constants are parametrized in terms of resonance masses and couplings. Information on those couplings and on the low-energy constants can be extracted by analysing QCD Green functions of currents both for large and small momenta. The chiral resonance theory generates Green functions that interpolate between QCD and chiral perturbation theory. As specific examples we consider the VAP and SPP Green functions.

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsChiral perturbation theory010308 nuclear & particles physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísica01 natural sciencesQCD[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Low energyCorrelation function[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quantum electrodynamicsQuantum mechanics0103 physical sciences1/NC expansion010306 general physicsChiral lagrangians
researchProduct

Odd-intrinsic-parity processes within the Resonance Effective Theory of QCD

2003

19 páginas, 4 figuras.-- arXiv:hep-ph/0306157v1

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsMesonHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyNuclear TheoryFísicaFOS: Physical sciencesVector meson dominance1/N ExpansionIntrinsic parityQCDPseudoscalarHigh Energy Physics - PhenomenologyPionGlobal symmetriesHigh Energy Physics - Phenomenology (hep-ph)Antisymmetric tensorEffective field theoryHigh Energy Physics::ExperimentChiral lagrangians
researchProduct

Meson resonances, large N_c and chiral symmetry

2003

14 páginas, 2 tablas.-- arXiv:hep-ph/0305311v1

PhysicsNuclear and High Energy PhysicsChiral symmetryParticle physicsMesonHigh Energy Physics::LatticeScalar (mathematics)High Energy Physics::PhenomenologyFOS: Physical sciencesFísica1/N ExpansionMass matrixQCDHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Mass spectrumHigh Energy Physics::ExperimentLimit (mathematics)Chiral lagrangians
researchProduct

Light hadrons from lattice QCD with light (u, d), strange and charm dynamical quarks

2010

We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N_f = 2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at two values of the lattice spacing a~0.078 fm and a~0.086 fm with lattice sizes ranging from L~1.9 fm to L~2.8 fm. We measure with high statistical precision the light pseudoscalar mass m_PS and decay constant f_PS in a range 270 < m_PS < 510 MeV and determine the low energy parameters f_0, l_3 and l_4 of SU(2) chiral perturbation theory. We use the two values of the lattice spacing, several lattice sizes as well as different values of…

QuarkNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryHigh Energy Physics::LatticeHadronCharm quarkFOS: Physical sciencesLattice QCD2 FLAVORS01 natural sciencesCHIRAL PERTURBATION-THEORYCharm quarkLattice constantHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeTWISTED MASS FERMIONSChiral perturbation theoryWILSON QUARKS0103 physical sciencesddc:530ALGORITHM010306 general physicsSCALEPhysics010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFísicaFermionLattice QCDSIMULATIONSPseudoscalarHigh Energy Physics - PhenomenologyLattice gauge theoryChiral LagrangiansYANG-MILLS THEORYHigh Energy Physics::ExperimentPHASE-STRUCTUREMESONChiral lagrangiansLight hadronsJournal of High Energy Physics
researchProduct

The Green function and SU(3) breaking in Kl3 decays

2005

18 páginas, 1 figura, 1 tabla.-- arXiv:hep-ph/0503108v3

Física1/N ExpansionChiral lagrangiansQCDCaltech Library Services
researchProduct

Testing chiral effective theory with quenched lattice QCD

2008

We investigate two-point correlation functions of left-handed currents computed in quenched lattice QCD with the Neuberger-Dirac operator. We consider two lattice spacings a ~ 0.09, 0.12 fm and two different lattice extents L ~ 1.5, 2.0 fm; quark masses span both the p- and the epsilon-regimes. We compare the results with the predictions of quenched chiral perturbation theory, with the purpose of testing to what extent the effective theory reproduces quenched QCD at low energy. In the p-regime we test volume and quark mass dependence of the pseudoscalar decay constant and mass; in the epsilon-regime, we investigate volume and topology dependence of the correlators. While the leading order b…

Quantum chromodynamicsPhysicsQuarkNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Lattice Gauge theoryFOS: Physical sciencesFísicaParticle Physics - LatticeLattice QCDLattice QCDQCDFIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIPseudoscalarHigh Energy Physics - LatticeLattice (order)Effective field theoryExponential decayChiral lagrangians
researchProduct